$\newcommand{\mat}[1]{\mathbf{#1}}$ $\newcommand{\fmat}[1]{\tilde{\mat{#1}}}$ $\newcommand{\ffmat}[1]{\check{\mat{#1}}}$ $\newcommand{\fffmat}[1]{\check{\tilde{\mat{#1}}}}$ $\newcommand{\f}[1]{\tilde{#1}}$ $\newcommand{\ff}[1]{\check{#1}}$ $\newcommand{\fff}[1]{\check{\tilde{#1}}}$ $\newcommand{\t}{\mathrm{T}}$ $\newcommand{\reels}{\mathbb{R}}$ $\newcommand{\dif}{\mathrm{d}}$ $\newcommand{\eps}{\varepsilon}$ $\newcommand{\ka}{\kappa}$ $\newcommand{\xy}{\mathbin{/\mkern-4mu/}}$ $\renewcommand{\ge}{\geqslant}$ $\renewcommand{\le}{\leqslant}$ $\DeclareMathOperator{\tr}{tr}$ $\DeclareMathOperator{\diag}{diag}$ $\DeclareMathOperator{\re}{Re}$ $\DeclareMathOperator{\im}{Im}$ $\DeclareMathOperator{\atan}{arctg}$

Pouvoir polarisant, dichroïsme et retard

1. Superposition incohérente de faisceaux lumineux

$$\mat J^\dagger \mat J = \begin{bmatrix} |a|^2+|c|^2 & a^*b+c^*d \\ ab^*+cd^* & |b|^2+|d|^2 \end{bmatrix}$$ $$B = \tr(\mat J^\dagger \mat J) = |a|^2+|b|^2+|c|^2+|d|^2$$ $$C = \det(\mat J^\dagger \mat J) = (|a|^2+|c|^2)(|b|^2+|d|^2)-|ab^*+cd^*|^2$$

Valeurs propres

$$\lambda^2-B \lambda + C = 0$$ $$\lambda = \frac {B \pm \sqrt{B^2-4C}} 2$$ $$B^2-4C = (|a|^2-|b|^2+|c|^2-|d|^2)^2+4|ab^*+cd^*|^2$$

Matrices de Jones homogènes (normales)

On dit qu'une matrice $\mat A$ est normale si elle commute avec son adjointe : $$\mat A \mat A^\dagger = \mat A^\dagger \mat A.$$ Une matrice peut s'écrire $$\mat A = \mat U \diag(\lambda_1, \cdots, \lambda_n) \mat U^\dagger$$ où $\mat U$ est unitaire si et seulement si elle est normale. Si une matrice de Jones est normale, on pourra l'écrire $$\begin{array} {ccc} \mat J = \lambda \boldsymbol\phi \boldsymbol\phi^\dagger + \mu \boldsymbol\psi \boldsymbol\psi^\dagger & \Rightarrow & \mat J^\dagger = \lambda^* \boldsymbol\phi \boldsymbol\phi^\dagger + \mu^* \boldsymbol\psi \boldsymbol\psi^\dagger. \end{array} \tag 7$$ Dans le jargon de l'optique, on dit qu'elle est homogène. $$\begin{split} m_{kl} & = 2 |\lambda |^2 \tr(\boldsymbol{\sigma}_k\boldsymbol{\phi}\boldsymbol{\phi}^\dagger\boldsymbol\sigma_l\boldsymbol{\phi}\boldsymbol{\phi}^\dagger) + 2 \lambda \mu^* \tr(\boldsymbol{\sigma}_k\boldsymbol{\phi}\boldsymbol{\phi}^\dagger\boldsymbol\sigma_l\boldsymbol{\psi}\boldsymbol{\psi}^\dagger) + 2 \lambda^* \mu \tr(\boldsymbol{\sigma}_k\boldsymbol{\psi}\boldsymbol{\psi}^\dagger\boldsymbol\sigma_l\boldsymbol{\phi}\boldsymbol{\phi}^\dagger) + 2 |\mu |^2 \tr(\boldsymbol{\sigma}_k\boldsymbol{\psi}\boldsymbol{\psi}^\dagger\boldsymbol\sigma_l\boldsymbol{\psi}\boldsymbol{\psi}^\dagger) \\ & = 2 |\lambda |^2 \boldsymbol{\phi}^\dagger\boldsymbol{\sigma}_k\boldsymbol{\phi}\boldsymbol{\phi}^\dagger\boldsymbol\sigma_l\boldsymbol{\phi} + 2 \lambda \mu^* \boldsymbol{\psi}^\dagger\boldsymbol{\sigma}_k\boldsymbol{\phi}\boldsymbol{\phi}^\dagger\boldsymbol\sigma_l\boldsymbol{\psi} + 2 \lambda^* \mu \boldsymbol{\phi}^\dagger\boldsymbol{\sigma}_k\boldsymbol{\psi}\boldsymbol{\psi}^\dagger\boldsymbol\sigma_l\boldsymbol{\phi} + 2 |\mu |^2 \boldsymbol{\psi}^\dagger\boldsymbol{\sigma}_k\boldsymbol{\psi}\boldsymbol{\psi}^\dagger\boldsymbol\sigma_l\boldsymbol{\psi} \\ & = \frac 1 2 \left[ |\lambda |^2 s_k s_l + \lambda \mu^* q_k^* q_l + \lambda^* \mu q_kq_l^* + |\mu |^2 s'_k s'_l \right]. \end{split}$$ $$\begin{split} m_{kl} & = 2 |\lambda |^2 \boldsymbol{\phi}^\dagger\boldsymbol{\sigma}_k\boldsymbol{\phi}\boldsymbol{\phi}^\dagger\boldsymbol\sigma_l\boldsymbol{\phi} + 2 \lambda \mu^* \boldsymbol{\psi}^\dagger\boldsymbol{\sigma}_k\boldsymbol{\phi}\boldsymbol{\phi}^\dagger\boldsymbol\sigma_l\boldsymbol{\psi} + 2 \lambda^* \mu \boldsymbol{\phi}^\dagger\boldsymbol{\sigma}_k\boldsymbol{\psi}\boldsymbol{\psi}^\dagger\boldsymbol\sigma_l\boldsymbol{\phi} + 2 |\mu |^2 \boldsymbol{\psi}^\dagger\boldsymbol{\sigma}_k\boldsymbol{\psi}\boldsymbol{\psi}^\dagger\boldsymbol\sigma_l\boldsymbol{\psi} \\ & = \frac 1 2 \left[ |\lambda |^2 s_k s_l + \lambda \mu^* (u_k-iv_k) (u_l+iv_l) + \lambda^* \mu (u_k+iv_k)(u_l-iv_l) + |\mu |^2 s'_k s'_l \right] \\ & = \frac 1 2 \left[ |\lambda |^2 s_k s_l + \lambda \mu^* [u_k u_l +v_k v_l + i (u_k v_l - u_l v_k)] + \lambda^* \mu [u_k u_l +v_k v_l - i (u_k v_l - u_l v_k)] + |\mu |^2 s'_k s'_l \right] \\ & = \frac 1 2 \left[ |\lambda |^2 s_k s_l + 2 \re(\lambda \mu^*) (u_k u_l +v_k v_l) - 2 \im(\lambda \mu^*) (u_k v_l - u_l v_k) + |\mu |^2 s'_k s'_l \right]. \end{split}$$ $$\mat M = \frac 1 2 \begin{bmatrix} |\lambda |^2 + |\mu |^2 & (|\lambda |^2 - |\mu |^2) \begin{bmatrix} s_1 & s_2 & s_3 \end{bmatrix} \\ (|\lambda |^2 - |\mu |^2) \begin{bmatrix} s_1 \\ s_2 \\ s_3 \end{bmatrix} & \begin{bmatrix} {(|\lambda |^2 + |\mu |^2) s_k s_l \\ + 2 \re(\lambda \mu^*) (u_k u_l +v_k v_l) \\ - 2 \im(\lambda \mu^*) (u_k v_l - u_l v_k)} \end{bmatrix}_{k, l = 1, 2, 3} \end{bmatrix}$$ $$\mat{\hat u} = \begin{bmatrix} -\sin(2\theta) & \cos(2\theta) & 0 \end{bmatrix}^\t$$ $$\mat{\hat v} = \begin{bmatrix} \cos(2\theta)\sin(2\epsilon) & \sin(2\theta)\sin(2\epsilon) & \cos(2\epsilon) \end{bmatrix}^\t$$

diatténuateur : $\lambda, \mu \in \reels^+$. On suppose $\lambda \ge \mu$ $$\mat M = \frac 1 2 \begin{bmatrix} \lambda^2 + \mu^2 & (\lambda^2 - \mu^2) \begin{bmatrix} s_1 & s_2 & s_3 \end{bmatrix} \\ (\lambda^2 - \mu^2) \begin{bmatrix} s_1 \\ s_2 \\ s_3 \end{bmatrix} & \begin{bmatrix} {(\lambda^2 + \mu^2) s_k s_l \\ + 2\lambda \mu (u_k u_l +v_k v_l)} \end{bmatrix}_{k, l = 1, 2, 3} \end{bmatrix}$$ $$\mat M = \frac 1 2 \begin{bmatrix} \lambda^2 + \mu^2 & (\lambda^2 - \mu^2) \begin{bmatrix} s_1 & s_2 & s_3 \end{bmatrix} \\ (\lambda^2 - \mu^2) \begin{bmatrix} s_1 \\ s_2 \\ s_3 \end{bmatrix} & \begin{bmatrix} {(\lambda - \mu)^2 s_k s_l + 2\lambda \mu \delta_{kl}} \end{bmatrix}_{k, l = 1, 2, 3} \end{bmatrix}$$ $$\begin{array} {llll} \mat M = \displaystyle\frac {\lambda^2 + \mu^2} 2 \begin{bmatrix} 1 & \mat d^\t \\ \mat d & \mat H \end{bmatrix} & \mat d = \displaystyle\frac {\lambda^2 - \mu^2} {\lambda^2 + \mu^2} \mat{\hat{d}} & \mat H = \mat P + \displaystyle\frac {2\lambda \mu} {\lambda^2 + \mu^2} (\mat I - \mat P) & \mat P = \mat{\hat{d}} \mat{\hat{d}}^\t \end{array}$$ $$\begin{array} {llll} T = \displaystyle\frac {\lambda^2 + \mu^2} 2 & d = \displaystyle\frac {\lambda^2 - \mu^2} {\lambda^2 + \mu^2} & \Rightarrow & \displaystyle\frac {2\lambda \mu} {\lambda^2 + \mu^2} = \sqrt{1-d^2} \end{array}$$ $$\begin{array} {llll} \mat M = T \begin{bmatrix} 1 & \mat d^\t \\ \mat d & \mat H \end{bmatrix} & \mat d = d \mat{\hat{d}} & \mat H = \mat P + \sqrt{1-d^2} (\mat I - \mat P) & \mat P = \mat{\hat{d}} \mat{\hat{d}}^\t \end{array}$$ $$\begin{array} {lll} d=0 & \Rightarrow & \mat H = \mat I \end{array}$$ $$\begin{array} {lllll} d=1 & \Rightarrow & \mat H = \mat P = \mat{{d}} \mat{{d}}^\t & \Rightarrow & \mat M = T \begin{bmatrix} 1 \\ \mat d \end{bmatrix} \begin{bmatrix} 1 & \mat d^\t \end{bmatrix} \end{array}$$ retardeur : $\lambda, \mu = e^{\pm i \delta \varphi}$. On suppose $\delta \varphi \ge 0$ $$\mat M = \begin{bmatrix} 1 & 0 \\ 0 & \begin{bmatrix} {s_k s_l \\ + \cos(2\delta \varphi) (u_k u_l +v_k v_l) \\ - \sin(2\delta \varphi) (u_k v_l - u_l v_k)} \end{bmatrix}_{k, l = 1, 2, 3} \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & \mat R \end{bmatrix}$$ $$R_{kl} = s_k s_l + \cos(2\delta \varphi) (u_k u_l +v_k v_l) - \sin(2\delta \varphi) (u_k v_l - u_l v_k)$$ $$\mat R \vec w = (\vec s \cdot \vec w) \vec s + \cos(2\delta \varphi) ((\vec u \cdot \vec w) \vec u+(\vec v \cdot \vec w) \vec v) - \sin(2\delta \varphi) \left( (\vec v \cdot \vec w) \vec u - (\vec u \cdot \vec w) \vec v \right) $$

$$\mat M = m_{00} \begin{bmatrix} 1 & 0 \\ 0 & \mat R \end{bmatrix} \begin{bmatrix} 1 & \mat d^\t \\ \mat d & \mat H \end{bmatrix} = m_{00} \begin{bmatrix} 1 & \mat d^\t \\ \mat R \mat d & \mat R \mat H \end{bmatrix}$$ $$\begin{array} {lll} d=1 & \Rightarrow & \mat M = m_{00} \begin{bmatrix} 1 & \mat d^\t \\ \mat R \mat d & \mat R \mat{{d}} \mat{{d}}^\t \end{bmatrix} = T \begin{bmatrix} 1 \\ \mat R \mat d \end{bmatrix} \begin{bmatrix} 1 & \mat d^\t \end{bmatrix} \end{array}$$

$$\mat M = m_{00} \begin{bmatrix} 1 & 0 \\ 0 & \mat D \end{bmatrix} \begin{bmatrix} 1 & \mat d^\t \\ \mat R \mat d & \mat R \mat H \end{bmatrix} = m_{00} \begin{bmatrix} 1 & \mat d^\t \\ \mat D \mat R \mat d & \mat D\mat R \mat H \end{bmatrix}$$ $$\begin{array} {lll} d=1 & \Rightarrow & \mat M = m_{00} \begin{bmatrix} 1 & \mat d^\t \\ \mat D \mat R \mat d & \mat D \mat R \mat{{d}} \mat{{d}}^\t \end{bmatrix} = T \begin{bmatrix} 1 \\ \mat D \mat R \mat d \end{bmatrix} \begin{bmatrix} 1 & \mat d^\t \end{bmatrix} \end{array}$$

5. Compléments, notes et références

$$\mat J^\dagger \mat J - \lambda \mat I = \begin{bmatrix} {\begin{array} {c} \frac 1 2 (|a|^2-|b|^2+|c|^2-|d|^2) \\ \mp \sqrt{\frac 1 4 (|a|^2-|b|^2+|c|^2-|d|^2)^2+|ab^*+cd^*|^2} \end{array}} & a^*b+c^*d \\ ab^*+cd^* & {\begin{array} {c} -\frac 1 2 (|a|^2-|b|^2+|c|^2-|d|^2) \\ \mp \sqrt{\frac 1 4 (|a|^2-|b|^2+|c|^2-|d|^2)^2+|ab^*+cd^*|^2} \end{array}} \end{bmatrix}$$ $$\mat J^\dagger \mat J - \lambda \mat I = \begin{bmatrix} \eta \mp \sqrt{\eta^2+|\zeta|^2} & \zeta^* \\ \zeta & -\eta \mp \sqrt{\eta^2+|\zeta|^2} \end{bmatrix}$$ $$\begin{array} {ll} \boldsymbol \phi_\pm = \begin{bmatrix} \eta \pm \sqrt{\eta^2+|\zeta|^2} & \zeta\end{bmatrix}^\t & \lVert \boldsymbol \phi_\pm \rVert^2 = 2\eta^2 + 2|\zeta|^2 \pm 2 \eta \sqrt{\eta^2+|\zeta|^2} \end{array}$$ $$\mat M_{\mat J} = \begin{bmatrix} \frac 1 2 (|a|^2+|b|^2+|c|^2+|d|^2 ) & \frac 1 2 (|a|^2-|b|^2+|c|^2-|d|^2) & {\re (ab^*+cd^* )} & {-\im (ab^*+cd^* )} \\ \frac 1 2 (|a|^2+|b|^2-|c|^2-|d|^2) & \frac 1 2 (|a|^2-|b|^2-|c|^2+|d|^2) & {\re (ab^*-cd^* )} & {-\im (ab^*-cd^* )} \\ {\re (ac^*+bd^* )} & {\re (ac^*-bd^* )} & {\re (ad^*+bc^* )} & {-\im (ad^*-bc^* )} \\ {\im (ac^*+bd^* )} & {\im (ac^*-bd^* )} & {\im (ad^*+bc^* )} & {\re (ad^*-bc^* )} \end{bmatrix}. \tag 2$$
Accueil